Nanocarbon Catalysts: Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites (Adv. Sci. 5/2020)
نویسندگان
چکیده
منابع مشابه
Nanocarbon condensation in detonation
We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experim...
متن کاملNanocarbon-based photovoltaics.
Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active layers made solely of carbon nanomaterials that present the same advantages of conjugated polymer-based solar cells, namely, solution processable, potentially flexible, and ch...
متن کاملMetal–nanocarbon contacts
To realize nanocarbons in general and carbon nanotube (CNT) in particular as on-chip interconnect materials, the contact resistance stemming from the metal–CNT interface must be well understood and minimized. Understanding the complex mechanisms at the interface can lead to effective contact resistance reduction. In this study, we compile existing published results and understanding for two met...
متن کاملNanocarbon surfaces for biomedicine
The distinctive physicochemical, mechanical and electrical properties of carbon nanostructures are currently gaining the interest of researchers working in bioengineering and biomedical fields. Carbon nanotubes, carbon dendrimers, graphenic platelets and nanodiamonds are deeply studied aiming at their application in several areas of biology and medicine. Here we provide a summary of the carbo...
متن کاملCatalytic Active Sites in Molybdenum Based Catalysts
In situ metal, acid and metal-acid (bifunctional) catalytic active functions were prepared following partial reduction by hydrogen of MoO3 deposited on TiO2 at temperatures between 623 K and 673 K. The bifunctional structure is obtained following the reduction of MoO3 to MoO2. The metallic properties of MoO2 are attributed to the delocalized electrons above the Mo atoms place along the C-axis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Science
سال: 2020
ISSN: 2198-3844,2198-3844
DOI: 10.1002/advs.202070028